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Steinhardt, Jeong, Saitoh, Tanaka, Abe & Tsai [Nature (London) (1998), 396,

55±57] have demonstrated that the structure of decagonal Al±Ni±Co can be built

from overlapping clusters of a single type. The structure arises from a decoration

of the decagons of a Gummelt covering. The unit (essentially a decagonal prism)

was called by Steinhardt et al. a `quasi unit cell'. In this work, a classi®cation

scheme is proposed for `G patterns' ± quasiperiodic patterns obtained by

decorating a decagonal quasi unit cell. The classi®cation makes use of the fact

that G patterns can also be derived from decoration of a tiling. The tiles are

analogues, for decagonal quasiperiodic patterns, of the `asymmetric units' of a

periodic pattern; they provide a simple mode of description and classi®cation of

the `Gummelt-type structures'. Four existing models for decagonal phases are

considered from this viewpoint.

1. Introduction

A decagonal quasicrystalline phase can be thought of as a

stack of layers of atoms with a periodic stacking sequence. In a

tiling model, the layers are constructed by decorating the tiles

of a quasiperiodic tiling ± usually the Penrose rhomb tiling or

one of its variants such as the Penrose kite and dart pattern

(Gardner, 1977; GruÈ nbaum & Shephard, 1987) or the ®rst

quasiperiodic pattern discovered by Penrose that contains

regular pentagonal tiles (Penrose, 1974). These various

Penrose tilings are all equivalent in the sense that there are

`recombination' rules which will convert one variety to

another; moreover, each variety of Penrose tiling is equivalent

to itself with a scaling factor � � �1� 51=2�=2 (Penrose, 1978;

GruÈ nbaum & Shephard, 1987; Lord, 1991). Note, however,

that decorating the set of tiles of a quasiperiodic tiling does not

in general give rise to a consistent decoration of the tiles of an

equivalent tiling. (For example, consider a Penrose tiling

consisting of white fat rhombs and black thin rhombs; in the

associated kite and dart tiling, the kites are not all identically

marked, nor are the darts.)

Gummelt's discovery (Gummelt, 1995a,b) of a quasiperi-

odic covering of the plane using a single `tile' has been

exploited recently to produce a convincing model for the

decagonal phase of Al±Ni±Co (Steinhardt et al., 1998). In

Gummelt's scheme, the tiles are regular decagons that overlap

rather than meeting edge to edge. The matching rule requires

that a black and white decoration, identical for every decagon,

shall be consistent on the overlap regions (black on black,

white on white). Steinhardt et al. elucidated the structure of

decagonal Al±Ni±Co in terms of an atomic decoration of the

Gummelt tile, which in 3D is a decagonal prism. This decor-

ated decagonal prism is analogous to a unit cell in a periodic

structure, except that the units overlap, sharing atoms at

`coincidence sites' in the overlap regions. The transformations

relating pairs of contiguous clusters are re¯ections and glide

re¯ections rather than translations. Steinhardt et al. named

this basic unit a `quasi unit cell'.

The concept introduced by Steinhardt et al. for the eluci-

dation of this particular phase raises a more general question.

What characteristics of a quasiperiodic pattern in two or in

three dimensions are necessary and suf®cient for it to be

describable in terms of a decagonal quasi unit cell, and how

can these patterns be classi®ed?

2. Gummelt coverings in 2D

Gummelt showed that every covering of the plane by

Gummelt decagons can be converted to a unique kite and dart

(KD) tiling by superimposing a `cartwheel' on every decagon,

as in Fig. 1.

A simpler relation between the kite and dart tilings and the

Gummelt coverings is indicated in Fig. 2 (Lord et al., 2000).

The patch consisting of a dart and two kites was called an `ace'

by Conway, who showed that every tile of a kite and dart tiling

Figure 1
A cartwheel of kites and darts superimposed on a Gummelt decagon.
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belongs to an ace (GruÈ nbaum & Shephard, 1987). The ®gure

indicates how every Gummelt decagon can be converted to an

ace and vice versa. The Gummelt coverings and the Penrose

KD tilings are in this sense equivalent. The `cartwheel' of Fig.

1 is obtained by applying two `decompositions' (GruÈ nbaum &

Shephard, 1987; Lord, 1991) to the dart and kites of the ace in

Fig. 2. Contiguous aces (i.e. aces abutting along an edge or

sharing a kite) of a kite and dart tiling or, equivalently, pairs of

overlapping decagons in a Gummelt covering, are related by

one of the following transformations:

A : 4�=5 �anticlockwise� about the point marked a; b;

B : 2�=5 about a; b;

C : 2�=5 about c;

D : �=5 about d;

E : �=5 about e;

Aÿ1; Bÿ1; Cÿ1; Dÿ1; Eÿ1:

In Fig. 3, we have illustrated the sets of decagons obtained by

applying the cyclic groups of transformations generated by B

(or A � B2), by C and by D (the ®gure generated by E would

of course be just the mirror image of the D ®gure). Notice,

incidentally, that the ring of ten decagons generated by D

cannot actually occur in a covering of the plane satisfying

Gummelt's matching rules; the central decagonal hole cannot

be covered without violating Gummelt's rules; recall, in

particular, the rule that every decagon edge must be contained

in an overlap region (Gummelt, 1995a,b). The con®guration is

the analogue, in the context of Gummelt coverings, of a

`decapod' defect in a Penrose tiling (GruÈ nbaum & Shephard,

1987, p. 267).

Our aim is to consider the aperiodic patterns, in two and

three dimensions, that can be constructed by decorating the

decagons of a Gummelt covering, and to classify the possi-

bilities. The symmetries of the portion of a pattern that lies in

the overlap regions of the patches shown in Fig. 3 are the basis

of our proposed classi®cation scheme.

3. Patterns generated by tilings and coverings

A pattern that can be superimposed on a tiling or a covering,

so that all tiles of the same kind in the tiling or covering are

Figure 2
An ace (the dart and the two kites outlined by heavy lines) superimposed
on a Gummelt decagon and the centres of rotations that relate pairs of
contiguous aces or, equivalently, pairs of overlapping decagons.

Figure 3
Patches generated by applying cyclic rotation groups to the Gummelt
decagon. Overlap regions are outlined in heavier lines.



`decorated' identically by the portion of the pattern that falls

within them, will be referred to as a pattern generated by the

tiling or covering.

We use the word `pattern' here in a very general sense. It

may be a set of atoms of various kinds at various positions, or a

function such as electron density, or simply an arrangement of

arbitrary `shapes'. Periodic patterns in the plane, for example,

are generated by tilings; the tiles are the fundamental regions

or `asymmetric units' for the appropriate `wallpaper group'

(Coxeter, 1961). Similarly, three-dimensional triply periodic

patterns are generated by decorating the asymmetric units (as

given in International Tables for Crystallography, 1987) of the

space groups. The `matching rules' that produce the tiling are

the generators of the space group, which relate contiguous

pairs of tiles. [See Lord (1997), in which continuous surfaces

are derived as patterns generated by decorated asymmetric

units.] The Penrose tilings have been employed extensively in

the construction of models for decagonal quasicrystalline

phases. An early example of an icosahedral quasicrystalline

structure generated by an Ammann tiling (the 3D analogue of

the Penrose rhomb tilings, consisting of two kinds of rhombic

hexahedra) is the structure of icosahedral Al±Mn proposed by

Yamamoto & Hiraga (1988).

A pattern generated by a Gummelt covering will be

referred to as a G pattern.

Aperiodic patterns generated by decorated Penrose tilings

or Gummelt coverings can be classi®ed in a manner strikingly

analogous to the space-group classi®cation of periodic

patterns. The classi®cation we propose is based on the point

symmetries of the decorations of the overlap regions of the

clusters shown in Fig. 3. The portion of a pattern generated by

a Gummelt covering (brie¯y: a `G pattern') within a single

decagon may have local re¯ection symmetries, as indicated by

the lines of type X and Y in Fig. 4. (By a `local' symmetry, we

mean a symmetry that applies only to the portion of the

pattern within the overlap regions indicated in Fig. 3.

Re¯ection in a line Y, for example, relates a pair of decagons

in the non-connected overlap region D of Fig. 3 but is not to be

regarded as applying to the rest of the decagon.) We get just

three kinds of plane G patterns, listed in Table 1. A quasi unit

cell of a pattern of a given type is obtained by placing an object

at a general position in the decagon and then applying to it the

symmetry operations indicated in the corresponding row of

the table.

4. The DKL tilings

Although a Gummelt covering is equivalent to a Penrose kite

and dart tiling or a Penrose rhomb tiling, the equivalence does

not in general carry over to the corresponding generated

patterns. There are G patterns that do not have all the kites (or

all the darts) of Fig. 1 decorated identically when the cart-

wheel pattern is overlaid on all the decagons of the covering.

There is, however, a tiling closely related to the KD tiling

whose decorations give precisely all the G patterns.

In Fig. 5, a Gummelt decagon has been tiled by three kinds

of tile: darts (D), kites (K) and `large kites' (L). Using the set

of transformations A, B, C, D, E and their inverses, a

decoration of the decagon has the required consistency

properties if and only if all the tiles of each of the three sets are

identically decorated. In case the mirror symmetries Y are

present (but not X), then the decorated tiles in the upper part

of the ®gure are mirror images of corresponding tiles in the

lower part. When the mirror symmetries X are present, each

tile can be further subdivided, by mirror lines, into a pair of

identical isosceles triangles. We shall refer to these triangular

tiles as D, K and L triangles.
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Figure 4
The two kinds of local re¯ection symmetries of G patterns.

Table 1
The three types of plane `G patterns'.

The entries in the columns X and Y indicate the presence or absence of the
mirror symmetries of types X and Y. The remaining columns list the point
symmetries of the portion of the pattern lying in the overlap regions of the
patches shown in Fig. 3.

X Y D, E B, C

p10 ± ± 10 5
p5m ± m 5m 5
p10m m m 10m 5m

Figure 5
Darts, kites and `large kites' superimposed on a Gummelt decagon. The
`large kites' are the white regions.
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The `matching rules' for building up DKL tilings can be

expressed in terms of three kinds of vertex markings, as

indicated in Fig. 6(a) in terms of DKL triangles.

A DKL tiling can be produced from a KD tiling by the rule:

convert every ace that is related to contiguous aces by the

transformations D and Eÿ1 to a large kite. This suggests

immediately an obvious way of producing a decomposition

rule for the DKL tilings: convert the given DKL large kites to

aces, apply the KD decomposition rule, then convert the

resulting �ÿ1 scaled KD tiling to DKL by the above rule. This

decomposition rule does not satisfy the criterion that all the

original tiles of each kind are dissected in an identical way ±

some of the K tiles become L tiles while others become aces

(D + 2K). Thus the � in¯ation rule for the KD tilings does not

give rise to a consistent � in¯ation rule for the associated

Gummelt coverings. However, applying two successive

decompositions gives the consistent �ÿ2 decomposition of D,

K and L triangles shown in Fig. 6(b). Correspondingly, we get

a �2 in¯ation rule for the Gummelt coverings.

The DKL tiles are analogous, for the decagonal patterns, to

the fundamental regions (or `asymmetric units') of wallpaper

patterns (or, in 3D, of the space groups). Special positions

relative to these tiles are analogues of Wyckoff positions. The

tile vertices are of three kinds, as in Fig. 6(a).

From the �ÿ2 decomposition rule, we have

D! D� K� L

K! 2D� 3K� L

L! 5D� 7K� 3L;

from which we deduce the ratios of the numbers of tiles of

each kind (in a `suf®cienly large' patch). We have

nD ! nD � 2nK � 5nL

nK ! nD � 3nK � 7nL

nL ! nD � nK � 3nL:

In the limit, the ratios become

nD : nK : nL � � : 51=2 : 1:

Whenever a decagonal phase is realised as a G pattern and

atomic positions in the `quasi unit cell' are known or postu-

lated, this formula provides a very simple way of computing

atomic percentages.

5. Classification of three-dimensional G patterns

In the three-dimensional G patterns, the basic unit is a dec-

agonal prism, the DKL tiles are prisms and each of the three

types of pattern listed in Table 1 leads to several distinct

classes of three-dimensional patterns, corresponding to the

fact that the rotations A, B, C, D and E may be realised as

screw transformations and the re¯ections X and Y may be

realised as c glides or as diad rotations about `horizontal' axes

(i.e. perpendicular to the prism axis ± the periodic axis). There

may also be `horizontal' mirror planes. We consider only cases

in which the nature of the transformation X is the same for all

three tile types (the generalization ± in which the very concept

of `pattern' becomes obscure ± seems unlikely to lead to

anything of interest).

The resulting classi®cation of pentagonal and decagonal G

patterns is summarized in Table 2. We shall de®ne two G

patterns as belonging to the same class, or as being of the same

`type', if their local symmetries A and B are the same. The

analogy with the space-group classi®cation of tetragonal and

hexagonal periodic patterns is quite striking, though there are

Figure 6
(a) Matching rules for the DKL triangle tilings. (b) The �ÿ2 decomposi-
tion rule.

Table 2
Classi®cation of G patterns.

Each type is determined by the rod groups B and D. Where C and E are not
given explicitly, they are the same as B and D, respectively. Screw axes are
denoted by 5p or 10q; p = 0 or q = 0 refer to simple rotations. Point groups
listed under B and D are to be understood as rod groups ± the translation
along the periodic z direction is implied.

X Y D B C E

P10q(p) ± ± 10q 5p 5p 102pÿq

P10=m ± ± 10=m 10�� 5=m�
P�5(p) ± ± �5 5p 52p

�5 �z � p�
P105=m ± ± 105=m 10

P5r2(p) ± 2 5r 2 5p 5p 5ÿr 2

P10c2 ± 2 10c2 10

P5c(p) ± c 5c 5p 52p 5c

P10=mc ± c 10=mc 10

P5m(p) ± m 5m 5p 52p 5m

P10m2 ± m 10m2 10

P10q22(p) 2 2 10q22 5p2 5p2 102pÿq22

P10=mcc 2 2 10=mcc 10c2

P�51m(p) 2 m �51m 5p2 52p
�51m

P105=mcm 2 m 105=mcm 10c2

P�51c(p) 2 c �51c 5p2 52p
�51c

P�5m1 m 2 �5m1 5m

P105=mmc m 2 105=mmc 10m2

P10mm m m 10mm 5m

P10=mmm m m 10=mmm 10m2

P105mc m c 105mc 5m

P�5c1 c 2 �5c1 5c

P10cm c m 10cm 5c

P10cc c c 10cc 5c



some subtle variations. The names we have given to the classes

of G patterns (column 1) should not be confused with the

usual symmetry classi®cation of decagonal quasicrystals. The

usual `symmetry' classi®cation of decagonal quasicrystalline

phases operates in terms of ®ve-dimensional space groups.

The classi®cation of G patterns given in Table 2 makes use

only of considerations in three-dimensional space, and is able

to indicate ®ner features ± note for example that ®vefold screw

axes 5p and tenfold screw axes 10q can occur in the same

pattern, with p and q independent. On the other hand, dec-

agonal quasicrystals are not necessarily `G patterns' ± prob-

ably most are not. The table identi®es 165 possible types of

three-dimensional G patterns. It is unlikely that more than a

very few of them are realised in nature as quasicrystalline

structures. Indeed, the centrosymmetric classes P105=mmc and

P10=mmm occur predominantly as `symmetries' of decagonal

phases. [A non-centrosymmetric phase of Al±Mn±Pd with

®ve-dimensional space group P105mc has been described in

detail by Weber & Yamamoto (1998). It is not a G pattern.] In

the following section, we demonstrate how P105=mmc arises

very naturally for G patterns or modi®ed G patterns built from

towers of icosahedra, `double icosahedra' or pentagonal

antiprisms.

6. Structure of some decagonal phases

In this section, we examine four decagonal quasicrystal

structures in order to demonstrate that they can be regarded

as G patterns or as systematic modi®cations of G patterns.

Fig. 7 shows a Gummelt decagon superimposed on a patch

of three pentagonal tiles ± indicating an obvious sense in

which the Penrose pentagon tilings and the Gummelt cover-

ings are equivalent. The three kinds of vertices introduced in

Fig. 6 are here labelled a, b and c, and the vertices of the

pentagons, d, are special positions for the G patterns. In three-

dimensional G patterns, positions of types a0, b0 and c0 are

related to those of types a, b and c by the `Y transformations'.

A very simple prescription converts a Penrose rhomb tiling

satisfying the usual matching rules to an equivalent tiling

consisting of three tile types: a `hex' built from one fat rhomb

and two thin rhombs, a `boat', built from three fat and one

thin, and a `star' built from ®ve fat rhombs (Tang & Jaric, 1990;

Henley, 1991; Li & Kuo, 1991; Lord, 1991; Li, 1995; Cockayne

& Widom, 1998b). The positions a of a Gummelt covering are

the vertices of an HBS (hex, boat, star) tiling.

Rather surprisingly, the structure of dec-

agonal Al±Mn, presented by Li (1995) in

terms of a decorated HBS tiling, turns out to

be a G pattern at a smaller scale. The basic

structure of this phase consists of rods, or

`towers', of Al icosahedra (with centred Mn

atoms) and pentagonal bipyramids (Fig. 8). If

regularity of these polyhedra is assumed, the

®ve layers labelled 0, 1, 2, 3, 4, 5 have z

coordinates given approximately by 0.0, 0.11,

0.21, 0.29, 0.39 and 0.50. Three of the towers

appear in projection as the small decagons in

Fig. 7. The structure can be completely

described in terms of `Wyckoff' positions:

Al : a�0; 0:39�; b�0:29�; c�0:11�; d�0; 1=2�
Mn : a�0:29�; c�1=2�:

Fig. 9 indicates the decoration of the funda-

mental units (DKL triangular prisms).

(Observe, incidentally, that the positions of

the atoms on the sides of these prisms

enforce the DKL matching rule!) Denoting
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Figure 8
Structure of decagonal Al±Mn viewed along a diad axis Y of P105=mmc. The two layers F and
F 0 are mirror planes.

Figure 7
Relation between Gummelt coverings and Penrose pentagon patterns.
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the period by c and the edge of the decagonal quasi unit cell

(Fig. 7) by a, then c=a � 3:53. The HBS tiles employed by Li

are quite large in relation to the decagonal cell. The edge

length of the HBS tiles is actually �a. Therefore, although Li's

model can, obviously, be described as a decorated Penrose

rhomb tiling by partitioning the HBS tiles, the description in

terms of a decorated DKL tiling ± and the equivalent

description as a `G pattern' ± is very much simpler. The ratio

Al :Mn is readily computed from Fig. 9. The content

of the prisms is D: (1=2)Al + (1=5)Mn, K: (11=20)Al +

(1=5)Mn, L: (3=2)Al + (1=4)Mn. Together with the ratio

D:K:L = � :51/2 :1, this gives

Al : Mn � 10� � 11� 51=2 � 30 : 4� � 4� 51=2 � 5 � 3:45 : 1:

All the sites in the quasi unit cell of the Al±Ni±Co model of

Steinhardt et al. (1998) are given by the a, b and c positions of a

G pattern based on a smaller decagon than the quasi unit cell

(smaller by a factor �ÿ1). This is illustrated in Fig. 10. The

positions a of the �ÿ1 decagons (which coincide with the

positions c of the quasi unit cell) are occupied by Al, b by Al

and Co, c by Al, Ni and Co. A few of the b-type positions are

vacant. These vacancies are necessary for the exact G pattern

of the Al±Ni±Co model ± an anomaly related to the anom-

alous � in¯ation for the Gummelt coverings that we have

already alluded to in our discussion of DKL tilings. The

existence of this �ÿ1 scaled G pattern implies that the structure

of decagonal Al±Ni±Co is basically an arrangement of towers

of pentagonal antiprisms (appearing in projection as the small

decagons of b and c sites in Fig. 7). Assuming equal edge

lengths, it is not dif®cult to deduce that c=a = �ÿ15ÿ1/4�
cos(18�) = 0.384 (where a is the edge length of the actual

decagonal quasi unit cell, not the �ÿ1 scaled cell).

The decoration of the quasi unit cell for Al±Ni±Co almost

corresponds to the decoration of a DKL tiling shown in Fig.

11. Positions a(1=2), b(0) and c(0) are occupied, respectively,

by cobalt, nickel and aluminium atoms. Additional Al and Co

sites are at special positions of the �ÿ1 pattern, as described

above. However, the cobalt atom and the two aluminium

atoms that form a small triangle inside the large kites are

absent in the large kite at the centre of the quasi unit cell.

These sites are occupied only when this large kite is over-

lapped by occupied sites. (This subtlety is a deviation from the

strict concept of G pattern as we have de®ned it.) The calcu-

lation of the ratio Al :Ni :Co is consequently not so straight-

forward as the computation of Al :Mn from Li's model. This

problem is dealt with in Appendix A.

The decagonal Al±Cu±Co phase elucidated by Cockayne &

Widom (1998a) is a decoration of an HBS tiling. Wittmann

(1999) has already given a detailed discussion of the deviations

of this structure from an exact G pattern of the kind proposed

by Steinhardt et al. for Al±Ni±Co. We approach this question

from a somewhat different viewpoint, emphasizing the �ÿ1 G

pattern of sites and the towers of pentagonal antiprisms.

Consider a decagonal quasi unit cell with a, b and c positions

occupied as follows:

Co : a�3=4�; Al=Cu : b�1=4�; Al : c�0; 1=2�:
Additional sites introduced by the �ÿ1 G pattern are

Al : a�0; 1=2�; b�3=4�; Al=Cu : b�1=4�:
In the model of Cockayne & Widom, the distribution of the

copper atoms at the Al=Cu positions is not random but is

mainly determined by the requirement that the edges of the

Figure 9
Decoration of the DKL prisms that reproduces Li's decagonal Al±Mn.
Open circles denote Al, black circles Mn. The numbers refer to the layers
perpendicular to the periodic axis.

Figure 10
The a, b and c positions of a Gummelt covering by decagons of edge
length �ÿ1 are all the sites (including vacant sites) for the Al±Ni±Co
structure with quasi unit cell of unit edge length. White and black circles
correspond, respectively, to z = 0 and z = 1

2. Atoms marked with arrows
are absent in large kites that belong to only one decagon.

Figure 11
Decoration of the DKL prisms that reproduces the Al±Ni±Co model of
Steinhardt et al.



HBS tiling (whose vertices are the c positions of the �ÿ1

pattern) each contain one Cu and one Co; this enforces the

HBS matching rule.

The deviations of the structure from an exact G pattern are

due to the particular distribution of Cu and the absence of

vacancies at the Al=Cu sites, and the placement of Al atoms at

c(0, 1=2) (i.e. at the centres of the pentagonal antiprisms that

surround them) rather than at c(1=4).

Cockayne & Widom (1998b) have also made a detailed

study of orthorhombic approximants to the decagonal Al±Co

quasicrystalline phase. These approximants are decorations of

periodic HB tilings, from which the corresponding decoration

of the quasiperiodic HBS tiles are readily deduced.

The basic structure of the Al±Co model can be visualized by

interpreting the small decagons in Fig. 7 as projections of

towers of `double icosahedra'. A view along the `Y axis' is

illustrated in Fig. 12. Assuming equal bond lengths gives

c=a � �4=5� cos�18�� �2�� � 2�3=2 � 0:857:

An exact G structure is

Al : a�1=2�; b�1=4�; c�0�;
Co : a�1=4��; d�0; 1=2�:

In the actual Al±Co phase as deduced from its approximants,

additional `interstitial' Al atoms occur at c�1=2� and c0�0�. The

short diagonal of the D tiles is in fact too short to accom-

modate atoms at both its vertices in the same layer. The

interstitials thus cause a shift of the positions of neighbouring

atoms and consequent deviations from an exact G pattern. In

particular, the ®vefold symmetry of the towers is disrupted.

The position shifts are indicated in Fig. 13.

7. Conclusions

The recognition of the existence of quasiperiodic tilings (the

DKL tilings) in 2D and 3D whose decorations produce the G

patterns (i.e. the structures obtained by decorating the dec-

agons of a Gummelt covering) leads to a simple way of

labelling the important sites in a certain class of quasicrystals.

The identi®cation of four known P105=mmc quasicrystals as

Gummelt structures or systematically disrupted Gummelt

structures suggests that this approach may be worth further

investigation.

APPENDIX A

The structure of decagonal Al±Ni±Co proposed by Steinhardt

et al. does not stricly ®t our de®nition of a `G pattern'. In a

Gummelt covering, the central region of a decagon (white L

tile in Fig. 5) may belong to more than one decagon or to only

one. In the Al±Ni±Co model, three atoms (two Al and one Co)

are replaced by vacancies in those L tiles that are not shared.

However, a single quasi unit cell with three vacancies in the

middle is suf®cient to de®ne the structure; the vacant sites

become occupied whenever they coincide with atoms from

another quasi unit cell. Thus, in order to obtain the ratios

Al :Ni :Co predicted by the model we need to know what

proportion of the decagons in a Gummelt covering have

central L tiles that are not shared by any other decagon. The

solution of this problem presented here calls into play some

interesting geometrical properties that are not without interest

in their own right.

Observe that, since an HBS tiling is very

simply obtained by omitting certain edges

in a Penrose rhomb tiling (speci®cally, those

with double arrow heads, in the conven-

tional edge labelling that enforces the

matching rule), a �ÿ1 de¯ation rule for HBS

tilings is readily obtained from that of the

rhomb tilings. De¯ating twice gives the �ÿ2

rule shown in Fig. 14,

H! 3H� B� S

B! 4H� 3B� S

S! 5H� 5B� S;

from which it follows that
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Figure 12
Two `double icosahedra' of aluminium atoms, centred around pairs of
cobalt atoms. The horizontal lines are mirror planes at 0 and 1=2.

Figure 13
Decagonal Al±Co. (a) The exact G pattern indicated as a decoration of DKL tiles. (b)
Deviations produced by interstitial Al atoms and the consequent position shifts.
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nH ! 3nH � 4nB � 5nS

nB ! nH � 3nB � 5nS

nS ! nH � nB � nS:

This gives (in the limit, for a suf®ciently large patch of HBS

tiling)

nH : nB : nS � �51=2 : 51=2 : 1:

Now note that an HBS tiling is obtained by joining the centres

of adjacent pentagons in a Penrose pentagon tiling and that

the centres of the decagons on a Gummelt covering lie at the

vertices of a pentagon tiling. It follows that an HBS tiling edge

length can be superimposed on a Gummelt covering so that

four decagon centres lie in each H tile, seven lie in each B and

ten lie in each S (Fig. 15). The ratio of HBS edge length to

decagon edge length is �2. The decagons of a Gummelt

covering can be classi®ed according to the transformations

that relate a decagon to the decagons that overlap it. There are

nine classes, which have been illustrated in Gummelt

(1995a,b). (Equivalently, we could classify the aces of a KD

tiling according to the ways in which an ace can be surrounded

by the KD tiles.) The nine types are

1:CCÿ1DEÿ1

4:Dÿ1Cÿ1AAÿ1Bÿ1

7:EDÿ1BBÿ1Aÿ1

2:CCÿ1AAÿ1

5:CEBAÿ1

8:EDÿ1BBÿ1Aÿ1

3:Dÿ1Cÿ1ABÿ1

6:CEBAAÿ1

9:EDÿ1BBÿ1AAÿ1:

It is not dif®cult to deduce the types of decagons whose

centres are shown in Fig. 15. The centres have been labelled

accordingly. (No generality is lost because the HBS patch in

the ®gure, consisting of 2H� B� S, is analogous to the `ace'

in a KD tiling; every tile belongs to a patch of this kind.)

In the Al±Ni±Co structure, the large kites are of two kinds ±

those shared by overlapping decagons and those not shared.

We shall call them L1 and L0 tiles, respectively. The L0 and L1

tiles are differently decorated, so calculation of atomic

percentages predicted by the model requires the ratio n0 :n1.

Observe that only decagons of types 1 and 2 have a central L

that is not overlapped; other L tiles in the quasi unit cell can

belong to two or to three cells. Each quasi unit cell contains 5

L tiles but, to avoid double counting, those shared by 2 or 3

cells count as 1=2 or 1=3. With this in mind, we ®nd that the

number of L tiles that each type of decagonal cell contributes

is as follows:

Figure 14
The �2 de¯ation rules for HBS tilings.

Figure 15
Relation between HBS tiling and decagon centres of a Gummelt
covering.

Figure 16
Centres of two kinds of decagon in a Gummelt covering.



1; 2 : 21 � L0 3; 5 : �5=2�L1 4; 6 : �7=3�L1

7; 8 : �13=6�L1 9 : 2L1:

Referring to Fig. 15, we see that each H contributes 2L0 + 9 L1,

each B contributes 3L0 + 15 L1 and each S contributes

5L0 + 20 L1. Since nH :nB :nS = �51/2 : 51/2 :1, we have

n0 : n1 � 2�51=2 � 3� 51=2 � 5 : 9�51=2 � 15� 51=2 � 20

� 8� � 6 : 39� � 23:

Normalizing so that n0 + n1 = 1,

nD : nK : n0 : n1 � � : 51=2 : 10� ÿ 16 : 17ÿ 10�:

The numbers of atoms of each kind, contributed by the D, K,

L0 and L1 tiles (see Fig. 11), are:

Finally, one obtains the ratio

Al : Ni : Co � 9� � 7� 51=2 � 13�10� ÿ 16� � 23�17ÿ 10�� :
� � 51=2 � 7 : 51=2 � 5�17ÿ 10��

� 176ÿ 77� : 5� � 5 : 84ÿ 48�;

which gives 72.6 :18.5 :8.9 [in close agreement with the ratios

given in Steinhardt et al. (1998)].

An alternative approach to the same problem is not without

interest; we shall indicate it brie¯y. Instead of the pentagon

vertices given by the centres of the decagonal cells, consider

the pentagon vertices given by all the d sites (see Fig. 7), which

lie inside the L tiles. In Fig. 16, those inside L0 tiles are marked

by white circles, those inside L1 tiles by grey or black circles.

(The white and black circles are at centres of the decagonal

quasi unit cells.) This information can be veri®ed by

constructing the actual Gummelt covering that Fig. 16

encodes. Looking now at the associated HBS tiling, we see

that each H contributes 4 L1, each B contributes L0 + 6 L1 and

each S contributes 5L0 + 5 L1. Hence, n0 :n1 = 51/2 + 5:4�51/2 +

6� + 5 = 2� + 4:16� + 7. Again, normalizing to n0 + n1 = 1

gives n0 :n1 = 10� ÿ 16:17 ÿ 10�.

Thanks are due to P. Steinhardt for clearing up a mis-

understanding of the quasi unit cell concept. Financial support

from the Of®ce of Naval Research, USA, under the Indo±US

Cooperation project entitled `Quasicrystals and Quasicrys-

talline Interfaces' (ONR grant No. 00014-95-1-0095) is grate-

fully acknowledged.
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Al Ni Co

D 9=5 1=5 0
K 7=5 2=5 1=5
L0 13=5 7=5 0
L1 23=5 7=5 1


